vein imports functions from spatial packages listed below. In order to install these packages, firstly the user must install the requirements mentioned here.
remotes::install_github("atmoschem/vein")
or if you have a 32 bits machine
install_github("atmoschem/vein",
INSTALL_opts = "--no-multiarch")
At the moment, most of the projects covers Brazilian regions, but I will include China, Europe or USA approaches as soon as I can.
Use the function get_project and read the documentation, there you can see more projects as well.
Check the projects here: (https://atmoschem.github.io/vein/reference/get_project.html)[https://atmoschem.github.io/vein/reference/get_project.html]
library(vein)
?get_project
get_project(directory = "awesome_city")
The structure of the new directory “awesome_city” is:
awesome_city
├── config
│ ├── clean.R
│ ├── config.R
│ ├── inventory.xlsx
│ └── packages.R
├── main.R
├── main.Rproj
├── network
│ ├── net.gpkg
│ └── net.rds
├── scripts
│ ├── evaporatives.R
│ ├── exhaust.R
│ ├── fuel_eval.R
│ ├── net.R
│ ├── pavedroads.R
│ ├── plots.R
│ ├── post.R
│ ├── traffic.R
│ └── wrf.R
└── wrf
└── wrfinput_d02
You have to open the file main.Rproj
with Rstudio and then open and run main.R
To run main.R
you will need these extra packages:
If you do not have them already, you can install:
install.packages(c("ggplot2", "readxl", "eixport"))
Read the instruction of inventory
?inventory
library(vein)
data("net")
PC_E25_1400 <- age_veh( x = net$ldv, "ldv")
plot(PC_E25_1400)
#> Weighted mean = 11.17
If you want to know the vehicles per street and by age of use, just add the net. Age functions now returns ‘sf’ objects if the net argument is present.
PC_E25_1400net <- age_veh(
x = net$ldv,
"ldv",
net = net
)
plot(PC_E25_1400net,
key.pos = 4,
pal = cptcity::cpt(
colorRampPalette = T,
rev = T))
#> Warning: plotting the first 9 out of 50 attributes; use max.plot = 50 to plot
#> all
temporal factors and netspeed
data("net")
data("pc_profile")
pc_week <- temp_fact(
net$ldv + net$hdv,
pc_profile
)
dfspeed <- netspeed(
q = pc_week,
ps = net$ps,
ffs = net$ffs,
cap = net$capacity,
lkm = net$lkm,
alpha = 1.5
)
plot(dfspeed)
#> Weighted mean = 44.16
If you want ot check the speed at different hours by street, just add net:
dfspeednet <- netspeed(
q = pc_week,
ps = net$ps,
ffs = net$ffs,
cap = net$capacity,
lkm = net$lkm,
alpha = 1.5,
net = net
)
plot(
dfspeednet[, c("S1", "S9")],
key.pos = 4,
pal = cptcity::cpt(colorRampPalette = T,
rev = T),
axes = T
)
#### 2) Emission Factors
V <- 0:150
ef1 <- ef_ldv_speed(
v = "PC",
t = "4S",
cc = "<=1400",
f = "G",
eu = "PRE",
p = "CO"
)
ef2 <- ef_ldv_speed(
v = "PC",
t = "4S",
cc = "<=1400",
f = "G",
eu = "III",
p = "CO"
)
ef1 <- EmissionFactors(ef1(1:150))
ef2 <- EmissionFactors(ef2(1:150))
colplot(data.frame(PRE = ef1, III = ef2))
euro <- c(
rep("V", 5),
rep("IV", 5),
rep("III", 5),
rep("II", 5),
rep("I", 5),
rep("PRE", 15)
)
lef <- lapply(1:40, function(i) {
ef_ldv_speed(
v = "PC",
t = "4S",
cc = "<=1400",
f = "G",
eu = euro[i],
p = "CO",
show.equation = FALSE
)
})
E_CO <- emis(
veh = PC_E25_1400,
lkm = net$lkm,
ef = lef,
speed = dfspeed,
profile = pc_profile
)
E_CO_DF <- emis_post(
arra = E_CO,
veh = "PC",
size = "<1400",
fuel = "G",
pollutant = "CO",
by = "veh",
type_emi = "exhaust"
)
E_CO_STREETS <- emis_post(
arra = E_CO,
pollutant = "CO",
by = "streets",
net = net
)
plot(
E_CO_STREETS[, c("V1", "V9")],
key.pos = 4,
pal = cptcity::cpt(colorRampPalette = T,
rev = T),
axes = T)
make_grid
.The spobj is the spatial net. The size of the grid has the size of the net. You have to specify the grid spacing.
data(net)
E_CO_STREETSnet <- emis_post(
arra = E_CO,
pollutant = "CO",
by = "streets_wide",
net = net
)
g <- make_grid(
spobj = net,
width = 1/102.47
)
#> Number of lon points: 12
#> Number of lat points: 10
E_CO_g <- emis_grid(
spobj = E_CO_STREETSnet,
g = g,
sr= 31983
)
#> Your units are:
#> g
#> Transforming spatial objects to 'sr'
#> Sum of street emissions 148791715.29
#> Sum of gridded emissions 148791715.29
na <- paste0("V", 1:168)
for(i in 1:168) E_CO_g[[na[i]]] <- E_CO_g[[na[i]]] * units::set_units(1, "1/h")
plot(
E_CO_g[, c("V1", "V9")],
key.pos = 4,
pal = cptcity::cpt(colorRampPalette = T,
rev = T,
pal = "mpl_viridis"),
axes = T,
lty = 0
)
library(eixport)
dir.create(file.path(tempdir(), "EMISS"))
wrf_create(wrfinput_dir = system.file("extdata", package = "eixport"),
wrfchemi_dir = file.path(tempdir(), "EMISS"),
domains = 2,
frames_per_auxinput5 = 1, #hours
auxinput5_interval_m = 60,
verbose = TRUE)
path_to_wrfi <- paste0(system.file("extdata", package = "eixport"), "/wrfinput_d02")
path_to_wrfc <- list.files(file.path(tempdir(), "EMISS"), full.names = TRUE)[1]
gwrf <- eixport::wrf_grid(path_to_wrfi)
E_CO_gwrf <- emis_grid(spobj = E_CO_STREETSnet, g = gwrf)
gr <- GriddedEmissionsArray(E_CO_gwrf, rows = 51, cols = 63, times = 1)
eixport::wrf_put(file = path_to_wrfc, name = "E_CO", POL = gr)
Thanks and enjoy VEIN!
If you use VEIN, please, cite it (BIBTEX, ENDNOTE):
Ibarra-Espinosa, S., Ynoue, R., O’Sullivan, S., Pebesma, E., Andrade, M. D. F., and Osses, M.: VEIN v0.2.2: an R package for bottom-up vehicular emissions inventories, Geosci. Model Dev., 11, 2209-2229, https://doi.org/10.5194/gmd-11-2209-2018, 2018.
@article{gmd-11-2209-2018,
author = {Ibarra-Espinosa, S. and Ynoue, R. and O'Sullivan, S. and Pebesma, E. and Andrade, M. D. F. and Osses, M.},
title = {VEIN v0.2.2: an R package for bottom--up vehicular emissions inventories},
journal = {Geoscientific Model Development},
volume = {11},
year = {2018},
number = {6},
pages = {2209--2229},
url = {https://gmd.copernicus.org/articles/11/2209/2018/},
doi = {10.5194/gmd-11-2209-2018}
}
If you encounter any issues while using VEIN, please submit your issues to: https://github.com/atmoschem/vein/issues/ If you have any suggestions just let me know to sergio.ibarra@usp.br.
Please, read this guide. Contributions of all sorts are welcome, issues and pull requests are the preferred ways of sharing them. When contributing pull requests, please follow the Google’s R Style Guide. This project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.
Sometimes you need to install R and all dependencies and a way for doing that is using anaconda. Well, as my system is in portuguese, after installing R using anaconda it changed the decimal character to ‘,’. In order to change it back to english meaning decimal separator as ‘.’, I added this variable into the .bashrc
More details on StackOverflow