`emis.Rd`

`emis`

estimates vehicular emissions as the product of the
vehicles on a road, length of the road, emission factor avaliated at the
respective speed. \(E = VEH*LENGTH*EF(speed)\)

emis(veh, lkm, ef, speed, agemax = ifelse(is.data.frame(veh), ncol(veh), ncol(veh[[1]])), profile, simplify = FALSE, hour = nrow(profile), day = ncol(profile), array = TRUE, verbose = FALSE)

veh | "Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as number of columns matching the age distribution of that ype of vehicle. The number of rows is equal to the number of streets link. If this is a list, the length of the list is the vehicles for each hour. |
---|---|

lkm | Length of each link in km |

ef | List of functions of emission factors |

speed | Speed data-frame with number of columns as hours. The default value is 34km/h |

agemax | Age of oldest vehicles for that category |

profile | Dataframe or Matrix with nrows equal to 24 and ncol 7 day of the week |

simplify | Logical; to determine if EmissionsArray should les dimensions, being streets, vehicle categories and hours or default (streets, vehicle categories, hours and days). Default is FALSE to avoid break old code, but the recommendation is that new estimations use this parameter as TRUE |

hour | Number of considered hours in estimation. Default value is number of rows of argument profile |

day | Number of considered days in estimation |

array | Deprecated! |

verbose | Logical; To show more information |

If the user applies a top-down approach, the resulting units will be according its own data. For instance, if the vehicles are veh/day, the units of the emissions implicitly will be g/day.

Hour and day will be deprecated because they can be infered from the profile matrix.

if (FALSE) { # Do not run data(net) data(pc_profile) data(profiles) data(fe2015) data(fkm) PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923, 133833,138441,142682,171029,151048,115228,98664,126444,101027, 84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512, 1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068) veh <- data.frame(PC_G = PC_G) pc1 <- my_age(x = net$ldv, y = PC_G, name = "PC") # Estimation for morning rush hour and local emission factors speed <- data.frame(S8 = net$ps) lef <- EmissionFactorsList(fe2015[fe2015$Pollutant=="CO", "PC_G"]) E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef, speed = speed, profile = 1) # Estimation for 168 hour and local factors pcw <- temp_fact(net$ldv+net$hdv, pc_profile) speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1) lef <- EmissionFactorsList(fe2015[fe2015$Pollutant=="CO", "PC_G"]) E_CO <- emis(veh = pc1, lkm = net$lkm, ef = lef, speed = speed, profile = profiles$PC_JUNE_2014) summary(E_CO) lpc <- list(pc1, pc1) E_COv2 <- emis(veh = lpc,lkm = net$lkm, ef = lef, speed = speed) # top down veh <- age_ldv(x = net$ldv[1:4], name = "PC_E25_1400", agemax = 4) mil <- fkm$KM_PC_E25(1:4) ef <- ef_cetesb("COd", "PC_G")[1:4] emis(veh, units::set_units(mil, "km"), ef) # group online bus1 <- age_hdv(30, agemax = 4) veh = bus1 lkm = units::set_units(400, "km") speed = 40 efco <- ef_cetesb("COd", "UB", agemax = 4) lef <- ef_hdv_scaled(dfcol = as.numeric(efco), v = "Ubus", t = "Std", g = ">15 & <=18", eu = rep("IV", 4), gr = 0, l = 0.5, p = "CO") for(i in 1:length(lef)) print(lef[[i]](10)) emis(veh = bus1, lkm = lkm, speed = 40, ef = lef, verbose = T) emis(veh = bus1, lkm = lkm, ef = efco, verbose = T) }